

Extension of the space qualified MLCC's ranges SPCD, Noordwijk

11/10/2018

www.exxelia.com

Introduction

- Presentation will aim at:
 - ✓ Describe qualification status of Exxelia's ceramic products and how it has been achieved
 - Present an overview of the development work (roadmap)
- Results presented correspond to about 10 years development
- Work conducted with the help of CNES. Many thanks.

Introduction

- Driving need : smaller / lighter / cheaper equipments
 - ✓ Miniaturization of the components
 - ✓ Surface Mounted Devices
- What does it imply?
 - ✓Manufacturing process modifications
 - ✓ Materials evolution
- What are the possible ways?
 - ✓ To design smaller capacitors with lower rated voltages
 - ✓To design alternative components with reduced lossed in order to minimize heating

- Goal : to extend chips qualification down to 0402 size and 10V what implies:
 - ➡ Reduction of dielectric thickness
 - ➡ Reduction of size margins
 - ⇒ Both actions to increase maximum available capacitance
- Constraint : to maintain a good reliability level
- Implications:
 - ⇒ New dielectrics or better desagglomerated
 - ⇒ New manufacturing equipments
 - ⇒ New (cleaner) manufacturing environment

- Dielectric:
 - ✓ No change until now, planned for future (see roadmap)
 - ✓ Slurry preparation optimization
 - ✓ New milling equipment (more powerfull and parameters better tunable)

- New manufacturing equipment:
 - ✓ Dedicated casting equipment in a clean area
 - ✓ Stacking equipment using tape on plastic in order to be able to handle very thin layers

✓New metallization equipment

Casting equipment

Ceramic sheet on plastic tape

• New manufacturing equipment:

Stacking equipment

Metallization machine

- Parts evaluated / qualified:
 - ✓ CEC (NPO) and CNC (BX / X7R)
 - ✓ Sizes 0402 to 2220
 - ✓ Rated voltage from 10V to 100V
 - Ag/Pd/Pt termination
 - Ag + nickel barrier + Sn/Pb 60/40 (or gold)
 - Ag + Ag filled polymer + nickel barrier + Sn/Pb 60/40 (or gold)
- Tests done according to ESCC 2 263 000 and 3001 + some additionnal tests such as:

✓ 500 thermal shocks -55°C / +125°C

✓ 100 thermal shocks -55°C / 125°C + 85/85 damp heat 1000h

• Qualification results:

	0402	0603	1210	2220
10 V		NEW (QPL)		
16 V		0.PL cinco 2012		
25 V	(QPL)			
50 V		WPL SINCE 2012		
100 V				

- Roadmap for next years:
 - ✓ Small sizes : from 0402 to 1210
 - ✓ 10V rated parts or less
 - ✓ Maximum capacitance multiplied by 5 to 10
- Necessary to have:
 - ✓ New equipments
 - ✓ Printing / stacking in clean environment

Work in progress

- Goals and constraints:
 - ⇒ To keep the CV product
 - ⇒ To be able to be used in a power / high voltage environment
 - ⇒ To reduce losses
 - ⇒ NPO have low dielectric constant
 - ⇒ BX / X7R have a high DF
- Decision: To use a N2200 material which allows to manufacture capacitors which have the same capacitance values left than X7R under voltage but very reduced power dissipation

• CARY main characteristics		
• C40X main characteristics.	Dissipation factor at 1kHz, 1V _{eff} :	≤ 10·10 ⁻⁴
	Typical DF at 400Hz, 1Veff :	≤ 5.10 ⁻⁴
	Insulation resistance at 20°C under 500V _{cc} :	≥ 20 000MΩ or 500MΩ·µF
	Dielectric withstanding voltage :	>1.4 U _{RC}
	Temperature coefficient :	-2200 ± 500 ppm/°C

- 2 main driving directions : high voltage and medium voltage
- Evaluation on high voltage (500V to 5kV) parts
 - ✓ Families
 - Chips with flexible termination
 - SMD parts (chips with DIL connections)
 - Through hole mounting molded parts
 - Tests based on ESCC 2 263 000 + additionnal tests
 - 500 thermal shocks -55°C / +125°C
 - 100 thermal shocks -55°C / +125°C 85/85 damp heat 1000h
 - Partial discharge evaluation
 - Power dissipation measurements
 - Vibrations

Positive results

- Extension to medium voltage
 - ✓ To increase type 1 ranges (factor 3 to 4 expected)
 - Sizes : 0603 to 1210
 - Voltage : 100V to 1000V
 - SMD chips with Ag/Ni/Sn-Pb terminals
 - ✓ Evaluation based on ESCC 2 263 000 + thermal shocks and 85/85 damp heat test

Positive results

- Administrative roadmap for next years
 - ✓ Introduction of C48X high voltage ranges in EPPL
 - ✓ Qualification C48X high voltage ranges
 - ✓ Qualify 0603 to 1210 medium voltage ranges
- New development : Evaluate and qualify high voltage SMD capacitors
 - ✓ Single chip components
 - ✓ Stacks

Work in progress

Thanks for your attention.

Any question?

Henri Laville

Technical manager ceramic capacitors • Capacitors GBU

> Phone: +33 (0)1 00 00 00 00 Cell: +33 (0)6 00 00 00 00